Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092765

RESUMO

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Filogenia , Sintenia/genética , Regulação da Expressão Gênica , Genoma/genética
2.
Sci Rep ; 13(1): 20400, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990054

RESUMO

IGT family genes play essential roles in shaping plant architecture. However, limited amount of information is available about IGT family genes in peanuts (Arachis hypogaea). In the current study, 13 AhIGT genes were identified and classified into three groups based on their phylogenetic relationship. Gene structure, conserved domain analyses indicated all AhIGTs were observed to share a similar exon-intron distribution pattern. AhIGTs within the same subfamily maintained a consistent motif composition. Chromosomal localization and synteny analyses showed that AhIGTs were unevenly localized on 9 chromosomes and that segmental duplication and purifying selection may have played important roles in the evolution of AhIGT genes. The analysis of conserved motifs, GO annotation, and transcript profile suggested that AhLAZY1-3 may play roles in gravity sensing and shaping peanut plant architecture. Transcript profile analysis suggested that AhTAC1 could potentially be involved gynophore ('peg') penetration into the soil. The cis-element analysis revealed that the light-responsive elements accounted for most of all cis-acting elements. Furthermore, qRT-PCR analysis showed that the expression of several AhIGT genes, like AhTAC1-2/4, was light-dependent, indicating that these genes may regulate plant architecture in response to light signals. This study may facilitate functional studies of the IGT genes in peanut.


Assuntos
Arachis , Família Multigênica , Arachis/genética , Arachis/metabolismo , Filogenia , Plantas/metabolismo , Sintenia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894740

RESUMO

Taproot cracking, a severe and common physiological disorder, markedly reduces radish yield and commercial value. Calcium-dependent protein kinase (CDPK) plays a pivotal role in various plant developmental processes; however, its function in radish taproot cracking remains largely unknown. Here, 37 RsCDPK gene members were identified from the long-read radish genome "QZ-16". Phylogenetic analysis revealed that the CDPK members in radish, tomato, and Arabidopsis were clustered into four groups. Additionally, synteny analysis identified 13 segmental duplication events in the RsCDPK genes. Analysis of paraffin-embedded sections showed that the density and arrangement of fleshy taproot cortex cells are important factors that affect radish cracking. Transcriptome sequencing of the fleshy taproot cortex revealed 5755 differentially expressed genes (DEGs) (3252 upregulated and 2503 downregulated) between non-cracking radish "HongYun" and cracking radish "505". These DEGs were significantly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interaction KEGG pathways. Furthermore, when comparing the 37 RsCDPK gene family members and RNA-seq DEGs, we identified six RsCDPK genes related to taproot cracking in radish. Soybean hairy root transformation experiments showed that RsCDPK21 significantly and positively regulates root length development. These findings provide valuable insights into the relationship between radish taproot cracking and RsCDPK gene function.


Assuntos
Arabidopsis , Raphanus , Raphanus/metabolismo , Filogenia , Genes de Plantas , Sintenia/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494290

RESUMO

The diversity of venomous organisms and the toxins they produce have been increasingly investigated, but taxonomic bias remains important. Neogastropods, a group of marine predators representing almost 22% of the known gastropod diversity, evolved a wide range of feeding strategies, including the production of toxins to subdue their preys. However, whether the diversity of these compounds is at the origin of the hyperdiversification of the group and how genome evolution may correlate with both the compounds and species diversities remain understudied. Among the available gastropods genomes, only eight, with uneven quality assemblies, belong to neogastropods. Here, we generated chromosome-level assemblies of two species belonging to the Tonnoidea and Muricoidea superfamilies (Monoplex corrugatus and Stramonita haemastoma). The two obtained high-quality genomes had 3 and 2.2 Gb, respectively, and 92-89% of the total assembly conformed 35 pseudochromosomes in each species. Through the analysis of syntenic blocks, Hox gene cluster duplication, and synonymous substitutions distribution pattern, we inferred the occurrence of a whole genome duplication event in both genomes. As these species are known to release venom, toxins were annotated in both genomes, but few of them were found in homologous chromosomes. A comparison of the expression of ohnolog genes (using transcriptomes from osphradium and salivary glands in S. haemastoma), where both copies were differentially expressed, showed that most of them had similar expression profiles. The high quality of these genomes makes them valuable reference in their respective taxa, facilitating the identification of genome-level processes at the origin of their evolutionary success.


Assuntos
Evolução Molecular , Gastrópodes , Duplicação Gênica , Genoma , Venenos de Moluscos , Gastrópodes/classificação , Gastrópodes/genética , Genoma/genética , Animais , Cromossomos/genética , Genes Homeobox , Sintenia/genética , Transcriptoma/genética , Venenos de Moluscos/genética
5.
J Biol Chem ; 299(7): 104899, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295773

RESUMO

Opsins are universal photosensitive proteins in animals. Vertebrates have a variety of opsin genes for visual and non-visual photoreceptions. Analysis of the gene structures shows that most opsin genes have introns in their coding regions. However, teleosts exceptionally have several intron-less opsin genes that are presumed to have been duplicated by an RNA-based gene duplication mechanism, retroduplication. Among these retrogenes, we focused on the Opn4 (melanopsin) gene responsible for non-image-forming photoreception. Many teleosts have five Opn4 genes including one intron-less gene, which is speculated to have been formed from a parental intron-containing gene in the Actinopterygii. In this study, to reveal the evolutionary history of Opn4 genes, we analyzed them in teleost (zebrafish and medaka) and non-teleost (bichir, sturgeon, and gar) fishes. Our synteny analysis suggests that the intron-less Opn4 gene emerged by retroduplication after the branching of the bichir lineage. In addition, our biochemical and histochemical analyses showed that, in the teleost lineage, the newly acquired intron-less Opn4 gene became abundantly used without substantial changes in the molecular properties of the Opn4 protein. This stepwise evolutionary model of Opn4 genes is quite similar to that of rhodopsin genes in the Actinopterygii. The unique acquisition of rhodopsin and Opn4 retrogenes would have contributed to the diversification of the opsin gene repertoires in the Actinopterygii and the adaptation of teleosts to various aquatic environments.


Assuntos
Evolução Molecular , Peixes , Íntrons , Opsinas , Animais , Peixes/genética , Peixes/fisiologia , Opsinas/genética , Opsinas/metabolismo , Filogenia , Rodopsina/genética , Rodopsina/metabolismo , Peixe-Zebra/genética , Oryzias/genética , Sintenia/genética
6.
Nature ; 618(7963): 110-117, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198475

RESUMO

A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.


Assuntos
Ctenóforos , Filogenia , Animais , Ctenóforos/classificação , Ctenóforos/genética , Genoma/genética , Poríferos/classificação , Poríferos/genética , Sintenia/genética
7.
Int J Biol Macromol ; 234: 123671, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801226

RESUMO

Auxin polar transport is an important way for auxin to exercise its function, and auxin plays an irreplaceable role in the rapid growth of Moso bamboo. We identified and performed the structural analysis of PIN-FORMED auxin efflux carriers in Moso bamboo and obtained a total of 23 PhePIN genes from five gene subfamilies. We also performed chromosome localization and intra- and inter-species synthesis analysis. Phylogenetic analyses of 216 PIN genes showed that PIN genes are relatively conserved in the evolution of the Bambusoideae and have undergone intra-family segment replication in Moso bamboo. The PIN genes' transcriptional patterns showed that the PIN1 subfamily plays a major regulatory role. PIN genes and auxin biosynthesis maintain a high degree of consistency in spatial and temporal distribution. Phosphoproteomics analysis identified many phosphorylated protein kinases that respond to auxin regulation through autophosphorylation and phosphorylation of PIN proteins. The protein interaction network showed that there is a plant hormone interaction regulatory network with PIN protein as the core. We provide a comprehensive PIN protein analysis that complements the auxin regulatory pathway in Moso bamboo and paves the way for further auxin regulatory studies in bamboo.


Assuntos
Sequência Conservada , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Poaceae , Transcrição Gênica , Sequência de Aminoácidos , Ácidos Indolacéticos/metabolismo , Modelos Moleculares , Família Multigênica/genética , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Processamento de Proteína Pós-Traducional , Sintenia/genética
8.
Mol Ecol ; 32(6): 1271-1287, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35810343

RESUMO

Synteny, the ordering of sequences within homologous chromosomes, must be maintained within the genomes of sexually reproducing species for the sharing of alleles and production of viable, reproducing offspring. However, when the genomes of closely related species are compared, a loss of synteny is often observed. Unequal homologous recombination is the primary mechanism behind synteny loss, occurring more often in transposon rich regions, and resulting in the formation of chromosomal rearrangements. To examine patterns of synteny among three closely related, interbreeding, and wild Eucalyptus species, we assembled their genomes using long-read DNA sequencing and de novo assembly. We identify syntenic and rearranged regions between these genomes and estimate that ~48% of our genomes remain syntenic while ~36% is rearranged. We observed that rearrangements highly fragment microsynteny. Our results suggest that synteny between these species is primarily lost through small-scale rearrangements, not through sequence loss, gain, or sequence divergence. Further examination of identified rearrangements suggests that rearrangements may be altering the phenotypes of Eucalyptus species. Our study also underscores that the use of single reference genomes in genomic variation studies could lead to reference bias, especially given the scale at which we show potentially adaptive loci have highly diverged, deleted, duplicated and/or rearranged. This study provides an unbiased framework to look at potential speciation and adaptive loci among a rapidly radiating foundation species of woodland trees that are free from selective breeding seen in most crop species.


Assuntos
Eucalyptus , Eucalyptus/genética , Genoma , Sintenia/genética , Cromossomos , Análise de Sequência de DNA/métodos
9.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555478

RESUMO

The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.


Assuntos
Lagartos , Animais , Masculino , Sintenia/genética , Lagartos/genética , Cromossomos Sexuais/genética , Cromossomos , Genoma , Cariótipo , Evolução Molecular
10.
Proc Natl Acad Sci U S A ; 119(40): e2209139119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161960

RESUMO

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.


Assuntos
Evolução Molecular , Cariótipo , Mamíferos , Sintenia , Animais , Bovinos/genética , Cromossomos de Mamíferos/genética , Eutérios/genética , Humanos , Mamíferos/genética , Filogenia , Bichos-Preguiça/genética , Sintenia/genética
11.
Nat Commun ; 13(1): 3729, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764640

RESUMO

The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the 'plant island syndrome', include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin's giant daisies.


Assuntos
Elementos de DNA Transponíveis , Genômica , Evolução Biológica , Elementos de DNA Transponíveis/genética , Sintenia/genética
12.
Plant Physiol ; 190(1): 226-237, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35670735

RESUMO

The Brassicaceae is an important plant family. We built a user-friendly, web-based, comparative, and functional genomic database, The Brassicaceae Genome Resource (TBGR, http://www.tbgr.org.cn), based on 82 released genomes from 27 Brassicaceae species. The TBGR database contains a large number of important functional genes, including 4,096 glucosinolate genes, 6,625 auxin genes, 13,805 flowering genes, 36,632 resistance genes, 1,939 anthocyanin genes, and 1,231 m6A genes. A total of 1,174,049 specific guide sequences for clustered regularly interspaced short palindromic repeats and 5,856,479 transposable elements were detected in Brassicaceae. TBGR also provides information on synteny, duplication, and orthologs for 27 Brassicaceae species. The TBGR database contains 1,183,851 gene annotations obtained using the TrEMBL, Swiss-Prot, Nr, GO, and Pfam databases. The BLAST, Synteny, Primer Design, Seq_fetch, and JBrowse tools are provided to help users perform comparative genomic analyses. All the genome assemblies, gene models, annotations, and bioinformatics results can be easily downloaded from the TBGR database. We plan to improve and continuously update the database with newly assembled genomes and comparative genomic studies. We expect the TBGR database to become a key resource for the study of the Brassicaceae.


Assuntos
Brassicaceae , Brassicaceae/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Genômica/métodos , Sintenia/genética
13.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628170

RESUMO

The Pleuronectiformes order, which includes several commercially-important species, has undergone extensive chromosome evolution. One of these species is Solea senegalensis, a flatfish with 2n = 42 chromosomes. In this study, a cytogenomics approach and integration with previous maps was applied to characterize the karyotype of the species. Synteny analysis of S. senegalensis was carried out using two flatfish as a reference: Cynoglossus semilaevis and Scophthalmus maximus. Most S. senegalensis chromosomes (or chromosome arms for metacentrics and submetacentrics) showed a one-to-one macrosyntenic pattern with the other two species. In addition, we studied how repetitive sequences could have played a role in the evolution of S. senegalensis bi-armed (3, and 5-9) and acrocentric (11, 12 and 16) chromosomes, which showed the highest rearrangements compared with the reference species. A higher abundance of TEs (Transposable Elements) and other repeated elements was observed adjacent to telomeric regions on chromosomes 3, 7, 9 and 16. However, on chromosome 11, a greater abundance of DNA transposons was detected in interstitial BACs. This chromosome is syntenic with several chromosomes of the other two flatfish species, suggesting rearrangements during its evolution. A similar situation was also found on chromosome 16 (for microsatellites and low complexity sequences), but not for TEs (retroelements and DNA transposons). These differences in the distribution and abundance of repetitive elements in chromosomes that have undergone remodeling processes during the course of evolution also suggest a possible role for simple repeat sequences in rearranged regions.


Assuntos
Elementos de DNA Transponíveis , Linguados , Animais , Linguados/genética , Cariótipo , Cariotipagem , Sintenia/genética
14.
Mol Immunol ; 143: 122-134, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131593

RESUMO

The nucleotide oligomerization domain (NOD)-like receptor (NLR) is a relatively conserved receptor family involved in natural immunity that plays a key role in the resistance to pathogen invasion and regulation of the innate immune response. Lethenteron reissneri (lamprey) is a representative species of existing ancient jawless vertebrates. Studies of the evolutionary relationship of immune system-related molecules in lampreys can provide an important reference for the origin and evolution of innate immunity. However, the characterization and evolutionary patterns of the NLR family remain unclear in the lamprey genome. Based on the genome database of L. reissneri, we identified nine NLR genes, characterized their functional domains and chromosomal positions, and constructed a network comprising the results of gene structure and gene-collinearity analyses. Comparative genomics studies suggest that Lr-NODa and Lr-NODb most likely share the common ancestor of NOD1 and NOD2 in jawed vertebrates, and that Lr-NODb may have been generated by lamprey-specific tandem duplication of Lr-NODa. Additionally, phylogenetic analysis of the NLRC subfamily suggests that Lr-NLRC3a has ancestral traits and may be derived from the common ancestor of another vertebrate NLRC subfamily. Further analysis of the formation of the NLRC subfamily has shown that exon shuffling, domain recombination, and chromosome rearrangement play important roles in its structural evolution. Furthermore, real-time quantitative polymerase chain reaction shows that most NLR genes in lamprey are highly expressed in the immune tissues of the heart, gill, and supraneural body, with these genes also showing significant responses to polyinosinic-polycytidylic acid infection. These results indicate that NLR genes are involved in the immune protection of L. reissneri and provide an important theoretical foundation for studies of the functional evolution of vertebrate NLRs involved in the innate immune system.


Assuntos
Regulação da Expressão Gênica , Genoma , Lampreias/genética , Lipopolissacarídeos/farmacologia , Proteínas NLR/genética , Poli I-C/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Éxons/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade , Íntrons/genética , Proteínas NLR/química , Proteínas NLR/metabolismo , Filogenia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia/genética , Distribuição Tecidual
15.
BMC Ecol Evol ; 22(1): 9, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109790

RESUMO

BACKGROUND: Hatching is identified as one of the most important events in the reproduction of oviparous vertebrates. The genes for hatching enzymes, which are vital in the hatching process, are conserved among vertebrates. However, especially in teleost, it is difficult to trace their molecular evolution in detail due to the presence of other C6astacins, which are the subfamily to which the genes for hatching enzymes belong and are highly diverged. In particular, the hatching enzyme genes are diversified with frequent genome translocations due to retrocopy. RESULTS: In this study, we took advantage of the rapid expansion of whole-genome data in recent years to examine the molecular evolutionary process of these genes in vertebrates. The phylogenetic analysis and the genomic synteny analysis revealed C6astacin genes other than the hatching enzyme genes, which was previously considered to be retained only in teleosts, was also retained in the genomes of basal ray-finned fishes, coelacanths, and cartilaginous fishes. These results suggest that the common ancestor of these genes can be traced back to at least the common ancestor of the Gnathostomata. Moreover, we also found that many of the C6astacin genes underwent multiple gene duplications during vertebrate evolution, and the results of gene expression analysis in frogs implied that genes derived from hatching enzyme genes underwent neo-functionalization. CONCLUSIONS: In this study, we describe in detail the molecular evolution of the C6astacin gene in vertebrates, which has not been summarized previously. The results revealed the presence of the previously unknown C6astacin gene in the basal-lineage of jawed vertebrates and large-scale gene duplication of hatching enzyme genes in amphibians. The comprehensive investigation reported in this study will be an important basis for studying the molecular evolution of the vertebrate C6astacin genes, hatching enzyme, and its paralogous genes and for identifying these genes without the need for gene expression and functional analysis.


Assuntos
Evolução Molecular , Vertebrados , Animais , Peixes/genética , Metaloendopeptidases , Filogenia , Sintenia/genética , Vertebrados/genética
16.
New Phytol ; 234(1): 295-310, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997964

RESUMO

Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.


Assuntos
Begoniaceae , Begoniaceae/genética , Evolução Molecular , Genoma , Filogenia , Sintenia/genética
17.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054810

RESUMO

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


Assuntos
Brassica napus/genética , Diploide , Genoma de Planta , Família Multigênica , Poliploidia , Sequência de Bases , Cromossomos de Plantas/genética , Éxons/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Frações Subcelulares/metabolismo , Sintenia/genética
18.
Mol Immunol ; 143: 58-67, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042118

RESUMO

Interleukin 12 (IL-12) binds its receptor complex of IL-12 receptor beta 1 (IL-12Rß1) and IL-12Rß2 to transduce cellular signaling in mammals. In teleosts, the function of Il-12 is drawing increasing attention, but molecular and functional features of Il-12 receptors remain obscure. Especially, the existence of multiple Il-12 isoforms in some fish species elicits the requirement to clarify their receptors. In this study, we isolated three cDNA sequences as Il-12 receptor candidates from grass carp, entitled as grass carp Il-12rß1 (gcIl-12rß1), gcIl-12rß2a and gcIl-12rß2b. In silico analysis showed that gcIl-12rß1 and gcIl-12rß2a shared the conserved gene locus and similar structure characteristics with their orthologues of zebrafish, frog, chicken, mouse and human, respectively. However, the Il-12rß2b of grass carp and zebrafish was similar to IL-27Ra in non-fish species. Further locally installed BLAST and gene synteny analysis uncovered three gcIl-12 receptors being single copied genes. Tissue distribution assay revealed that gcil12rß1 and gcil12rß2a transcripts were predominantly expressed in head kidney, differing from the even distribution of gcil12rß2b transcripts in all detected tissues. Subsequently, the binding ability and antagonistic effects of recombinant extracellular region of gcIl-12rß1 with recombinant grass carp Il-12 (rgcIl-12) isoforms were explored, providing functional evidence of the newly cloned gcIl-12rß1 being genuine orthologues of mammalian IL-12Rß1. Moreover, our data showed that gcIl-12rß1 and gcIl-12rß2a but not gcIl-12rß1 and gcIl-12rß2b mediated the effects of rgcIl-12 isoforms on ifn-γ promoter activity, thereby revealing Il-12 receptor signaling in fish. These results identified grass carp Il-12 receptors, thereby advancing our understanding of Il-12 isoform signaling in fish.


Assuntos
Carpas/metabolismo , Subunidade beta 1 de Receptor de Interleucina-12/metabolismo , Subunidade beta 2 de Receptor de Interleucina-12/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Humanos , Subunidade beta 1 de Receptor de Interleucina-12/química , Subunidade beta 1 de Receptor de Interleucina-12/genética , Subunidade beta 2 de Receptor de Interleucina-12/química , Subunidade beta 2 de Receptor de Interleucina-12/genética , Filogenia , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Sintenia/genética
19.
Nucleic Acids Res ; 50(D1): D1040-D1045, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792158

RESUMO

Insects are the largest group of animals on the planet and have a huge impact on human life by providing resources, transmitting diseases, and damaging agricultural crop production. Recently, a large amount of insect genome and gene data has been generated. A comprehensive database is highly desirable for managing, sharing, and mining these resources. Here, we present an updated database, InsectBase 2.0 (http://v2.insect-genome.com/), covering 815 insect genomes, 25 805 transcriptomes and >16 million genes, including 15 045 111 coding sequences, 3 436 022 3'UTRs, 4 345 664 5'UTRs, 112 162 miRNAs and 1 293 430 lncRNAs. In addition, we used an in-house standard pipeline to annotate 1 434 653 genes belonging to 164 gene families; 215 986 potential horizontally transferred genes; and 419 KEGG pathways. Web services such as BLAST, JBrowse2 and Synteny Viewer are provided for searching and visualization. InsectBase 2.0 serves as a valuable platform for entomologists and researchers in the related communities of animal evolution and invertebrate comparative genomics.


Assuntos
Bases de Dados Genéticas , Genoma de Inseto/genética , Insetos/genética , Software , Animais , Insetos/classificação , MicroRNAs/genética , Sintenia/genética
20.
Nucleic Acids Res ; 50(D1): D1025-D1031, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792170

RESUMO

Genomicus is a database and web-server dedicated to comparative genomics in eukaryotes. Its main functionality is to graphically represent the conservation of genomic blocks between multiple genomes, locally around a specific gene of interest or genome-wide through karyotype comparisons. Since 2010 and its first release, Genomicus has synchronized with 60 Ensembl releases and seen the addition of functions that have expanded the type of analyses that users can perform. Today, five public instances of Genomicus are supporting a total number of 1029 extant genomes and 621 ancestral reconstructions from all eukaryotes kingdoms available in Ensembl and Ensembl Genomes databases complemented with four additional instances specific to taxonomic groups of interest. New visualization and query tools are described in this manuscript. Genomicus is freely available at http://www.genomicus.bio.ens.psl.eu/genomicus.


Assuntos
Bases de Dados Genéticas , Eucariotos/genética , Evolução Molecular , Genoma/genética , Eucariotos/classificação , Genômica , Humanos , Internet , Filogenia , Software , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...